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Abstract. We study weak localization and electron interaction in CdTe:In by low temperature magnetocon-
ductance experiments to quantify the phase breaking length and the importance of interactions in CdTe.
Then we study superconducting contacts to CdTe:In by transport measurements at very low temperature.
The conductance-voltage characteristics of the superconducting contact exhibits the main features of a
SIN junction, with a superimposed zero bias anomaly. This anomaly in the density of states of CdTe is
very sensitive to magnetic field and probably induced by the proximity of the superconducting contact.

PACS. 72.15.Rn Quantum localization – 72.80.Ey III-V and II-VI semiconductors – 74.50.+r Proximity
effects, weak links, tunneling phenomena, and Josephson effects

The combined effect of disorder and interaction is prob-
ably responsible for an anomalous conducting phase in
2D films of high mobility semiconductors [1]. Both the
mobility and the effective mass of carriers are important
parameters which control the occurrence of the strong de-
crease of the film-resistance below typically one kelvin.
The transition is not observed for electrons in GaAs (low
effective electron mass m∗ = 0.067) but exists for holes
(m∗ = 0.3) or for silicon MOSFETs of comparable mo-
bility (m∗ = 0.4). CdTe:In is an interesting case because
its effective electron mass (m∗ = 0.11) is intermediate be-
tween those of GaAs and Silicon. Heterostructures and 2D
gases can be also realized [2].

For these reasons we present weak localization and
electron-electron interaction studies in 3D, low mobil-
ity, CdTe:In samples. We show that the phase breaking
time is relatively large at very low temperature, compa-
rable to what is observed in GaAs:Si or metallic films
(τφ ' 2.5× 10−9 s below T = 100 mK). The temperature
dependence of the conductance at very low temperature
allows us to estimate the screening length and more gen-
erally the correction to conductivity due to interaction.

We have also studied CdTe:In/In contacts below
the critical superconducting temperature of indium.
Semiconductor-Superconductor (Sm-Su) contacts have
been extensively studied in recent years, in relation with
new mesoscopic proximity effects [4–6]. Most studies are
devoted to GaAs, InGaAs or InAs-based structures. CdTe
is an interesting material for studying Sm-Su contacts be-
cause ohmic contacts are obtained by deposition of indium
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films whereas Schottky contacts are observed with gold
films. Thanks to this property, it is possible in principle
to design geometries where a Schottky gate is placed very
close to a superconducting contact, which is crucial for
studying mesoscopic aspects of the Andreev reflection.

We will show that the sharp G(V) characteristics
of In/CdTe:In contacts is of Superconductor-Insulator-
Metal type (SIN). The transparency of the interface is
small and we estimate the depairing rate for Cooper pairs
near the interface. Nevertheless this material is promising
for studying mesoscopic Andreev reflection. In particular
we report the existence of a zero bias anomaly which is
very sensitive to the magnetic field. By comparison with
what we know from magnetoconductance experiments in
the CdTe film, we can show that this anomaly is not di-
rectly related to electron interaction correction to the den-
sity of states in CdTe, but is induced by the proximity of
the superconducting contact.

1 Weak localization and interaction
corrections

The sample consists of a 2.7µm thick nominally doped at
5× 1023 In m−3 CdTe layer grown on a CdZnTe (0.04 Zn)
substrate by molecular beam epitaxy [3]. The sample is
chemically etched to form a Hall bar. The contacts are
as-grown Indium films on the top of the CdTe crystal.

The Hall measurement shows that between T = 30 mK
and T = 4.2 K, the carrier concentration is constant and
equal to n = 1.7×1023 m−3. We deduce kF = (3π2n)1/3 =
1.71 × 108 m−1. The diffusion coefficient is calculated at
T = 4.2 K to be D ' 4 × 10−4 m2s−1, that places the
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Fig. 1. Low field magnetoconductance of the CdTe film (3.33 squares in series) at various low temperatures. The solid lines are
fits by the weak localization formula 2. Note that the conductance increases at low temperature.

sample very close to the Ioffe-Regel criterium kF ` ' π
for the Metal-Insulator transition. Following the Mott cri-

terium, n
1/3
c aB ' 0.25 [7], the metal-insulator transition

(MIT) is expected to take place at a doping concentration
of 1.25×1023 e.m−3 (the Bohr radius is aB = 5 nm). Other
characteristics of the sample are listed below: the resis-
tance per square is 213 ohm. Between the voltage probes,
the sample consists of 3.33 squares in series. The mobility
is µ = 638 cm2V−1s−1 (T = 4.2 K).

The magnetoconductance (magnetic field perpendicu-
lar to the film and to the current) is plotted for different
temperatures between T = 30 mK and T = 4.2 K in Fig-
ure 1. The low field magnetoconductance is typical for
weak localization suppression by time reversal symmetry
breaking in the absence of spin-orbit scattering. Because
the sample is 3D (all dimensions are larger than the phase
breaking length Lφ =

√
Dτφ, where τφ is the phase break-

ing time), the correction due to weak localization is given
by (in the absence of any spin relaxation) [8]:

∆σWL(T ) =
1

4

e2

2π2~

(
1

`
−

1

Lφ(T )

)
(1)

where the factor 1/4 is introduced in our weak localization
fit (see later).

The positive magnetoconductance is given by:

∆σ(H) =
1

4

e2

2π2~LH
f3

(
2
L2
φ

L2
H

)
(2)
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Fig. 2. The phase breaking length estimated from the local-
ization fit in Figure 1, versus temperature. The solid line is the
estimation by equation (4). The dotted line is the estimation
for the thermal length.

with

f3(x) =
∞∑
n=0

(
2
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n+ 1 +

1

x
−
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n+

1

x

)

−
1√

n+ 1
x

+ 1
2

)
(3)

(the expression f3(x) is roughly equal to x3/2/48 if x� 1
and f3(x) ' 0.605 if x � 1). The magnetic length is

LH =
√

~c
2 eH . The solid lines in Figure 1 are the fits by

equation (2). The prefactor 1/4 is our phenomenological
parameter. Such a prefactor could be due to the proxim-
ity of the metal-insulator transition. It does not affect the
magnetic field dependence of the conductance which gives



W. Poirier et al.: Weak localization and interaction in doped CdTe 295

0,0 0,4 0,8 1,2 1,6 2,0

36,4

36,6

36,9

37,2

37,4

37,7

 H=0T
 H=0.02T
 H=1T

G
(e

2 /h
)

T(K)1/2

Fig. 3. Conductance of the CdTe film (3.33 squares in series)
as a function of temperature for three magnetic fields. The
solid line is the fit by equation (7) for H = 1 T. The maximum
of conductance occurs when the Zeeman splitting is approxi-
mately equal to the thermal energy.

the value of Lφ. Figure 2 shows the variation of the phase
breaking length with temperature. We obtain Lφ ' 1µm
at T = 30 mK. It corresponds to a relatively large phase
breaking time of 25×10−10 s, comparable to or larger than
the values observed in GaAs:Si samples or metallic films.
If electron-electron scattering is the dominant energy re-
laxation process, Altshuler et al. [8] obtain:

1

τφ
=

2e2

π2~σ
√

2D

(
kbT

~

)3/2

(4)

where σ = 1
RsquareW

is the conductivity and W the thick-

ness. This gives 1
Lφ
∝ T 3/4 and Lφ ' 92 nm at T = 1 K

(τφ ' 2.1 × 10−11 s). The prediction of equation (4) is
plotted as a solid line in Figure 2. It gives the right or-
der of magnitude for the phase breaking time, but not the
right evolution, which follows the 1

Lφ
∝ T 3/4 dependence

at high temperature with a prefactor approximately 2.5
times larger in the experiment, and shows a saturation
at low temperature. The observation of the saturation is
a common fact (see for instance [14]), and the prefactor
could be eventually due to an underestimation of the dif-
fusion constant D, due to uncertainties in the effective
thickness of the film. Another explanation for the pseudo-
saturation of Lφ could be a dimensionality crossover be-
tween Lφ � W at high temperature (3D) and Lφ ' W
at low temperature (2D) (W = 2.7µm is the nominal
thickness of the doping). In the 2D case, the predicted
temperature dependence is Lφ ∝ T 1/2, weaker than in the
3D case. Nevertheless our largest Lφ is still smaller than
W . Our estimation of Lφ is typically ten times smaller
than the one obtained in CdTe:In doped at ' 1024 m−3

in reference [9]. This is not surprising because at this con-
centration the sample is more in the metallic regime and
the diffusion constant is larger.

An interesting point is that, at very low temperature
the conductance of the sample increases as the tempera-
ture is lowered (at low magnetic field) (see Fig. 1), suggest-
ing that a positive increasing electron-electron interaction

(EEI) correction overcomes the weak localization correc-
tion itself. In the opposite case the conductance should
decrease when the weak localization grows as the temper-
ature decreases. The situation is similar to the case of 3D
Si:P for doping concentration typically twice the critical
concentration for the MIT [10–12]. The electron interac-
tion correction overcomes the weak localization correction

if the thermal length LT =
√

~D
kBT

is much smaller than

the phase breaking length, which is realized in our sample
(LT ' 55 nm at T = 1 K). In fact the EEI correction is
given by [8]:

∆σEEI(T ) = 0.915
e2

2π2~

(
2

3
+

3λ(j=1)

4

)(
1

`
−

1

LT

)
·
(5)

The first universal term describes interaction between an
electron and a hole with parallel spins and is due to the
exchange (Fock) term while λ(j=1) is related to the direct
(Hartree) term in the Hartree-Fock approximation of the
Coulomb repulsion (λ(j=1) is negative). In the absence of
any attractive virtual potential between electrons, λ(j=1)

depends only on the Fermi surface and on the screening
length. The exchange term dominates the Hartree term,
if the interaction potential is sufficiently smooth, i.e. its
extension is larger than λF . A positive EEI correction

((2
3 + 3λ(j=1)

4 ) ≤ 0) means on the contrary that the Hartree
part is dominant over the exchange part in the correction
(Eq. (5)).

For magnetic fields higher than Hc = kbT
gµB

, the spin de-

generescence is broken by Zeeman splitting, and the cor-
rection due to interaction becomes [8]:

∆σEEI(T ) = 0.915
e2

2π2~

(
2

3
+
λ(j=1)

4

)(
1

`
−

1

LT

)
·
(6)

The Zeeman splitting reduces the Hartree contribution by
a factor of three. The exchange contribution, which is in-
sensitive to the Zeeman effect because it concerns elec-
trons and holes with parallel spins, becomes dominant
with respect to the Hartree term. The temperature de-
pendence for the conductance is then reversed as seen in
Figure 3 for a magnetic field of 1 T.

More precisely, the temperature dependence at H =
1 T could be fitted over all the temperature range with
the following equation, whose limits for kbT ≤ gµBH and
kbT ≥ gµBH are respectively equations (5, 6) [8]:

∆σEEI(T,H) =
e2

2π2~

(
2

3
+
λ(j=1)

4

(
3− 2f3

(
gµbH

kBT

)))
×

(
1

`
−

1

LT

)
(7)

where f3(x) =
∫∞

0 dω δ2

δ2ω (ωN(ω))(
√
ω + x +

√
|ω − x|

− 2
√
ω) and N(ω) = 1

exp(ω)−1 ·
Two parameters enter essentially in the fit: the Landé

factor g and λ(j=1). λ(j=1) depends only on the Fermi
surface and on the screening length; in three dimensions
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Fig. 4. Conductance of the semiconducting film (7.7 squares
in series) and the two superconducting Indium junctions versus
voltage at various magnetic fields from 0 to 0.02 T (values of
field are respectively: 0, 35, 40, 45, 50, 60, 70, 80, 89, 110 and
200 ×10−4 T). The temperature is T = 29 mK.

(if there is no electron-electron interaction via virtual
phonon exchange) [8]:

λ(j=1) =
32

3

1 + 3/4F − (1 + F/2)3/2

F
(8)

and

F =
2

x2
ln(1 + x2) (9)

with x = 2kF
kscreening

·

The solid line in Figure 3 (H = 1 T) is obtained with
|g| ' 0.6 and λ(j=1) ' −1.03, equivalent to F ' 1.12.
This corresponds to kscreening ' 2.48× 108 m−1.

kscreening is close to the calculated screening wave vec-
tor in the Thomas-Fermi approximation (εr is 10.5 in
CdTe):

kTF =

(
kFm

∗e2

π2εrε0~2

)
' 2.07× 108 m−1 (10)

We have been forced to multiply the theoretical values for
∆σEEI by a constant factor of 0.7, whose origin is not
explained. This factor does not affect the determination
for λ(j=1). Note that the change of sign for the correc-
tion occurs as T ' gµBH

kB
' 0.4 K (for |g| ' 0.6): for

higher temperatures, the Zeeman splitting is not resolved

and the correction is proportional to (2
3 + 3λ(j=1)

4 ), and
for lower temperatures the correction is proportional to

(2
3 + λ(j=1)

4 ). The fitted Landé factor is comparable to its
theoretical estimation (g = −0.62), but lower than ob-
served by electron paramagnetic resonance experiments
(g = −1.7) [13]. g = −1.7 would produce a change of sign
for the conductance correction for H = 1 T at T ' 1.14 K.
In Figure 3, no change is seen for T 0.5 = (1.14)0.5 ' 1.07.

Summing the corrections due to interaction and weak
localization, the temperature dependence of the conduc-
tivity at zero magnetic field is given by (T2 ≤ T1):

σ(T2)− σ(T1) =
e2

2π2~

(
1

4
(L−1

φ (T1)− L−1
φ (T2))

)
+ 0.915

×0.7

(
2

3
+

3λ(j=1)

4

)
(L−1

T1
− L−1

T2
) (11)

(the factors 1/4 and 0.7 are the phenomenological param-
eters introduced in our fits for the low field magnetocon-
ductance and for the temperature dependence atH = 1 T)

Equation (11) includes too many parameters for a
real adjustment. Nevertheless the variation of conduc-
tivity between our lowest temperature (35 mK) and 1
kelvin for instance is in agreement with equation (11):
at T = 35 mK (resp. 1 K), Lφ ' 1µm and LT ' 0.3µm
(resp. Lφ ' 0.25µm and LT ' 0.055µm). For zero field
we calculate ∆σ ' −3.2 Ω−1m−1 in rather good agree-
ment with the observed ∆σ ' −5.2 Ω−1m−1 (or ∆G '

0.1 = 1
3.333∆σW

e2

h in quantum units, see Fig. 3), if one
considers that ∆σ results from the difference of two large
opposite terms, the weak localization and the interaction
correction.

At H = 200× 10−4 T, the weak localization contribu-
tion in equation (11) is strongly reduced, and the Zee-
man splitting is still not resolved. We calculate ∆σ '
−12.4 Ω−1m−1 and we measure ∆σ ' −12.5 Ω−1m−1 (or

∆G ' 0.265 = 1
3.333∆σW

e2

h
in quantum units, see Fig. 3).

In conclusion of this section, we have found that our
CdTe:In film is close to the metal-insulator transition, but
that the phase breaking time is relatively large and the
screening of the Coulomb repulsion is strong. We obtain a
reasonable agreement with the theories of both weak local-
ization and interaction correction in the diffusive regime
[8]. This considerations are very important in the context
of the mesoscopic proximity effect near superconducting
contacts, because the phase breaking length fixes the scale
for the mesoscopic effects, and interactions in the normal
metal (or doped semiconductor) affect strongly the prox-
imity effect. We now consider contacts to superconducting
Indium films.

2 Superconducting contacts

Figure 4 shows the G-V characteristics of two In-CdTe
contacts in series with approximately 7.7 squares of the
CdTe film at the lowest temperature, for various magnetic
fields. The two 380µm2 diameter circular superconduct-
ing contacts are directly on the top of the CdTe:In layer
(a Hall bar of width 300µm is defined by etching; the
separation between the centers of the indium contacts is
2400µm). The contact are as-grown without any surface
or annealing treatments.

For zero magnetic field the G-V curve shows a pro-
nounced dip for bias below 2 mV. This value is larger
than twice the superconducting gap of the Indium con-
tact, which is evaluated to be 650µeV, because of the
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Fig. 5. The deduced conductance for each CdTe/Indium contact versus the voltage normalized to the Indium superconducting
gap ∆ ' 650µV. The solid line is the BTK fit, in a planar geometry (see the text). The open circles are in zero magnetic field
at the lowest temperature, the open squares for the lowest temperature at H = 0.02 T and the solid squares for zero field and
T = 1.1 K.

voltage drop across the semiconducting film. Above this
bias the conductance is slightly enhanced as compared to
its normal state value, obtained above the indium critical
superconducting temperature, or at high magnetic field.
An extra dip in conductance near zero voltage appears at
small magnetic field.

Figure 4 shows the raw data and it is necessary to take
into account the resistance of the CdTe film between the
two superconducting contacts (1655 ohms) to obtain the
G-V characteristics of each Su-Sm contact. The data in
Figures 5 and 6 are obtained after this (simple) numerical
treatment. Figure 5 shows the conductance versus bias for
each superconducting contact at the lowest temperature
for zero magnetic field and for H = 2 × 10−2 T, and at
T = 1.1 K for H = 0 T. The bias is calculated across
each contact and normalized to the estimated value for
the indium critical voltage (∆ ' 650µeV).

The large absolute value of the contact resistance cor-
responds to a small transparency per channel at the inter-
face. In a planar junction, the current is injected through
the whole surface of the contact and then is forced to
flow transversally through the thickness of the CdTe:In
layer. The resistance per square of the normal semicon-
ducting film is relatively large, and it is easy to show
by simple resistance network calculations that the ex-
tension of the current lines under overlap is given by
L '

√
Rb/RN (RN is the resistance per square of the

semiconductor and Rb is the specific resistance of the
barrier). The total normal resistance of each junction
(planar NS interface + Semiconductor under the junc-

tion) is given by RTot '
√
RbRsquare/W (for L smaller

than the overlap, W denotes the transverse length of
the overlap border). Neglecting all interference phenom-
ena due to the confinement in the planar junction, we are
able to estimate the value of the normal specific junction

resistivity: Rb ' 5.0× 10−2 Ωcm2, and to fit all the G-V
characteristics [16]. The estimation for the barrier trans-
mission t should be consistent with the absolute measured
value of the normal contact resistance, via the relation
t = h

Rb2e2
( 2
λF

)−2. Supposing the barrier is homogeneous,

the latter relation implies a very small t (4× 10−7).

In that case one can neglect Andreev reflection pro-
cesses which are proportional to t2 � t � 1 (two elec-
trons could be transferred though the N-S interface to
form a Cooper pair in the superconducting bank). So con-
sidering the interface in the tunneling approximation, the
differential conductance is proportional to the densities of
states near the junction both in indium and in CdTe. We
have used the formalism of Blonder, Tinkham and Klap-
wijk (BTK) [15], adapted to the case of a planar junc-
tion with a highly resistive normal bank. Indeed the BTK
theory considers a one-dimensional ballistic junction. But
because the differential conductance depends strongly on
the actual voltage and as the CdTe film is resistive, the
conductance through the junction is not constant at dif-
ferent distances from the overlap border. The solid line in
Figure 5 is our fit where we use the BTK formalism taking
into account the variation in voltage across the junction
due to the finite resistance of the semiconducting film un-
der the superconducting contact overlap [16].

The fit includes the following parameters: the super-
conducting gap ∆, the temperature, the transmission of
the barrier t and a depairing rate Γ , which could also rep-
resent a smoothing of the superconducting gap near the
interface; In both cases the gap parameter ∆ in the theory
is formally replaced by ∆+ iΓ [17,18].

The fit should first take into account the reduction in
conductance at zero bias as compared to bias above the
superconducting gap. The observed factor of 6 is large for
a superconductor-semiconductor contact.
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Fig. 6. The deduced conductance for each CdTe/Indium contact, normalized to the Indium superconducting gap ∆ ' 650µV,
versus magnetic field. The inset shows the linear increase of zero bias conductance with magnetic field.

One can explain quantitatively this factor of 6 in three
different ways: the transmission per channel t is about
1/6 and G(V = 0) ∝ t2 ' 1/6G(eV � ∆) ∝ t; with this
value, as said before, one attempts a unrealistic low spe-
cific contact resistance, except if the barrier is very inho-
mogeneous and the effective surface of conducting links is
percentiles of the whole surface. In principle it is possible
in that case to use the BTK formalism without Γ param-
eter (not done here). The second way is somewhat similar
to the first one, because it supposes inhomogeneities; but
one suppose that the contact resistance is large and ho-
mogeneous and that Indium is partially superconducting
and partially normal. At small bias, the contact resistance
is much lower in front of the normal regions (than of the
superconducting ones) and provides an effective shunt for
the current below the gap. This is what is happening in
magnetic field (see later).

We have chosen to explain our results in a third way
which is to introduce the depairing rate Γ which smoothes
the BCS density of states in Indium. This depairing rate
Γ = 16µV is small as compared to the superconducting
gap ∆ ' 650µeV.

With this value the fit does not depend on the small
value for t the transparency per channel (except for the ab-
solute value of the tunnel conductance of course). We have
chosen t = 4×10−7, but we know that fit is not changed if
t� 1/6. Figure 5 shows the excellent agreement between
our fit and the experimental data at low temperature. The
advantage of this procedure with a depairing rate is to
avoid the hypothesis of non uniform transmission through
the contact, that is not really justified in our as-grown
contacts.

Note that a small decrease of the conductance near
zero bias is not properly fitted. We attribute this features
to anomalies in the CdTe density of states near the con-
tact, which are not included in the fit (see later).

The effect of a magnetic field H = 2 × 10−2 T is
to destroy completely the dip in differential conductance
seen at voltage below the gap. This field is comparable
to the critical field for the superconductivity of bulk in-
dium (H = 2.9×10−2 T). Figure 6 shows the evolution of
G(V) for one CdTe/Indium junction at small fields. The
inset shows a linear dependence of the linear conductance
versus the magnetic field (between H = 25× 10−4 T and
H = 150 × 10−4 T). This dependence is understood if
we suppose that a normal tunnel junction NIN conduc-
tance is added to the SIN conductance at zero field. This
is what is expected, when the magnetic flux progressively
penetrates the indium film.

In addition to the main features of the G-V curves
and their evolution with magnetic field to a normal con-
ductance, it is clear that the differential conductance ex-
hibits anomalies near zero voltage. For H = 200×10−4 T,
the superconductivity of indium is destroyed, and the G-
V curves of junctions show a pronounced increase at low
voltage. This is due to the increase of the density of states
due to interaction in CdTe. Figure 7 shows the normalized
variation of the conductance versus bias for the 2 probes
measurement with Indium contacts (H = 0.02 T, the In-
dium is normal) as compared to the conductance variation
for the CdTe film (4 probes measurement). The zero bias
anomaly is partly due to the change in the CdTe film con-
ductance and partly due to the anomaly in the In/CdTe
contact conductance, which directly reflects the density
of states in CdTe close to the junction. This is because
the voltage drop is divided between the two contact resis-
tances and the CdTe film. Nevertheless one sees that the
relative conductance anomaly is more important on the
tunnel resistance through the contacts than on the nor-
mal resistance of the film (if not, the relative effect would
be the same or less in the 2-probes case). We note that
the observation of a peak at zero bias in the tunneling
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with two Indium contacts (2 probes measurement). The conductance exhibits a dip at zero voltage instead of a peak (see the
text).

conductance of superconductor/barrier/disordered metal
is an exception (see [8] and references therein).

At zero magnetic field, instead of a peak in conduc-
tance at zero bias, the characteristics exhibits a deficit of
conductance near zero bias (see Fig. 4 and the inset of
Fig. 7). This deficit is rapidly destroyed by the magnetic
field. This deficit is not due to the weak localization or
interaction correction in the film, that increases the con-
ductance at small energy (see Figs. 3, 7). Either, this dip
is not due to the modification of the density of states by
solely the screened Coulomb interaction in CdTe near the
contact. As shown before this effect tends to increase the
conductivity at low energy that reflects a peak in the den-
sity of states at the Fermi energy (see [8]). Consequently
the dip is due to the presence of superconductivity in the
indium electrode.

This dip could be due to an interference effect near
the superconducting contact. Note in particular its sen-
sitivity to an applied magnetic field: it is destroyed by a
magnetic field of 50×10−4 T (see Fig. 4). Such sensitivity
to magnetic field tends to exclude arguments in terms of
Coulomb blockade near the tunnel junction [19].

It has been shown both theoretically [20] and experi-
mentally [21] that the density of states in a normal metal
in close contact with a superconductor is deeply modified
by the proximity effect. A dip in the density of states ap-
pears at small energy (from the Fermi level) which is very
sensitive to the magnetic flux: the effect is killed when the
electron-hole symmetry is broken by the magnetic field
(H ≥ h

eL2
T

) or the voltage (eV ≥ ~D
L2
T

). In the case where

the SN contact transparency is low, the confinement in
the normal metal near the interface could produce qualita-
tively the same effect [22]. It is very likely that mesoscopic
proximity effect, occurring near an SIN junction, where N
is a strongly disordered material, like CdTe near the MIT,
is responsible for the conductance decrease near zero bias
at zero magnetic field. A similar deep of conductance near
zero bias at very low temperature and zero magnetic field
has already been reported in GaAs/GaAlAs heterostruc-
tures contacted with Sn-Ti [23].

3 Conclusions

We have investigated interferences and interactions in
CdTe:In films. The material is interesting for various as-
pects: the phase breaking time is long, the electron inter-
actions are screened, in agreement with the Thomas-Fermi
approximation, and finally the native contact with indium
is not too resistive and shows sharp SIN characteristics
as compared to other superconductor-semiconductor con-
tacts. In addition a strong anomaly appears in the den-
sity of states of CdTe near the junction which could be
attributed to the mesoscopic proximity effect, even if the
contact resistance is large. These conclusions make the
materials promising both in the context of mesoscopic su-
perconductivity in superconducting-semiconducting junc-
tions, and for the study of new anomalous conducting
phases in two dimensional semiconductors with relatively
large effective mass.
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